18.3.1. Transport Layer

18.3.1. Transport Layer

The primary role of the transport layer is to facilitate safe and secure communication between the two hosts at the time of authentication and during subsequent communication. The transport layer accomplishes this by handling the encryption and decryption of data, and by providing integrity protection of data packets as they are sent and received. The transport layer also provides compression, speeding the transfer of information.

Once an SSH client contacts a server, key information is exchanged so that the two systems can correctly construct the transport layer. The following steps occur during this exchange:

During the key exchange, the server identifies itself to the client with a unique host key. If the client has never communicated with this particular server before, the server's host key is unknown to the client and it does not connect. OpenSSH gets around this problem by accepting the server's host key. This is done after the user is notified and has both accepted and verified the new host key. In subsequent connections, the server's host key is checked against the saved version on the client, providing confidence that the client is indeed communicating with the intended server. If, in the future, the host key no longer matches, the user must remove the client's saved version before a connection can occur.


It is possible for an attacker to masquerade as an SSH server during the initial contact since the local system does not know the difference between the intended server and a false one set up by an attacker. To help prevent this, verify the integrity of a new SSH server by contacting the server administrator before connecting for the first time or in the event of a host key mismatch.

SSH is designed to work with almost any kind of public key algorithm or encoding format. After an initial key exchange creates a hash value used for exchanges and a shared secret value, the two systems immediately begin calculating new keys and algorithms to protect authentication and future data sent over the connection.

After a certain amount of data has been transmitted using a given key and algorithm (the exact amount depends on the SSH implementation), another key exchange occurs, generating another set of hash values and a new shared secret value. Even if an attacker is able to determine the hash and shared secret value, this information is only useful for a limited period of time.

Note: This documentation is provided {and copyrighted} by Red Hat®, Inc. and is released via the Open Publication License. The copyright holder has added the further requirement that Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. The CentOS project redistributes these original works (in their unmodified form) as a reference for CentOS-5 because CentOS-5 is built from publicly available, open source SRPMS. The documentation is unmodified to be compliant with upstream distribution policy. Neither CentOS-5 nor the CentOS Project are in any way affiliated with or sponsored by Red Hat®, Inc.