Product SiteDocumentation Site

Chapter 4. Known Issues

4.1. anaconda
4.2. cmirror
4.3. compiz
4.4. device-mapper-multipath
4.5. dmraid
4.6. dogtail
4.7. firstboot
4.8. gfs2-utils
4.9. gnome-volume-manager
4.10. initscripts
4.11. iscsi-initiator-utils
4.12. kernel-xen
4.13. kernel
4.14. kexec-tools
4.15. krb5
4.16. kvm
4.17. less
4.18. libvirt-cim
4.19. libvirt
4.20. lvm2
4.21. mesa
4.22. mkinitrd
4.23. openib
4.24. openmpi
4.25. pdksh
4.26. qspice
4.27. rsyslog
4.28. sblim
4.29. selinux-policy
4.30. systemtap
4.31. udev
4.32. virt-manager
4.33. virtio-win
4.34. xen
4.35. xorg-x11-drv-i810
4.36. xorg-x11-drv-nv
4.37. xorg-x11-drv-vesa

4.1. anaconda

The anaconda package contains the program which was used to install your system.
The following are the Known Issues that apply to the anaconda package in Red Hat Enterprise Linux 5.4
  • When installing to an ext3 or ext4 file system, anaconda disables periodic filesystem checking. Unlike ext2, these filesystems are journaled, removing the need for a periodic filesystem check. In the rare cases where there is an error detected at runtime or an error while recovering the filesystem journal, the file system check will be run at boot time. (BZ#513480)
  • When installing KVM or Xen guests, always create a partition for the guest disk, or create an LVM volume. Guests should not be installed to block devices or raw disk devices. Anaconda includes disk label duplication avoidance code, but when installing within a VM, it has no visibility to the disk labels elsewhere on the host and cannot detect duplicates.
    If guest filesystems, especially the root filesystem, are directly visible to the host, a host OS reboot may inadvertantly parse the partition table and mount the guest filesystems. This can lead to highly undesirable outcomes. (BZ#518461)
  • The minimum memory requirement when installing all Red Hat Enterprise Linux packages (i.e. '*' or '@everything' is listed in the %packages section of the kickstart file) on a fully virtualized Itanium guest is 768MB. After installation, the memory allocated to the guest can be lowered to the desired amount. (BZ#507891)
  • Upgrading a system using Anaconda is not possible if the system is installed on disks attached using zFCP or iSCSI (unless booted from the disk using a network adaptor with iBFT). Such disks are activated after Anaconda scans for upgradable installations and are not found. To update please use the Red Hat Network with the hosted Web user interface, a Red Hat Network Satellite, the local graphical Updater, or the yum command line. (BZ#494033)
  • Anaconda's graphical installer fails to start at the default 800x600 resolution on systems utilizing Intel Graphics Device Next Generation (IGDNG) devices. To work around this issue, ensure anaconda uses a higher resolution by passing the parameters resolution=1024x768 or resolution=1280x1024" to the installer using the boot command line.
  • The NFS default for RHEL5 is "locking". Therefore, to mount nfs shares from the %post section of anaconda, use the mount -o nolock,udp command to start the locking daemon before using nfs to mount shares. (BZ#426053)
  • If you are using the Virtualized kernel when upgrading from Red Hat Enterprise Linux 5 to 5.2, you must reboot after completing the upgrade. You should then boot the system using the updated Virtualized kernel.
    The hypervisors of Red Hat Enterprise Linux 5 and 5.2 are not ABI-compatible. If you do not boot the system after upgrading using the updated Virtualized kernel, the upgraded Virtualization RPMs will not match the running kernel. (BZ#251669)
  • When upgrading to Red Hat Enterprise Linux 5.1 or later from Red Hat Enterprise Linux 4.6, gcc4 may cause the upgrade to fail. As such, you should manually remove the gcc4 package before upgrading. (BZ#432773)
  • When provisioning guests during installation, the RHN tools for guests option will not be available. When this occurs, the system will require an additional entitlement, separate from the entitlement used by dom0.
    To prevent the consumption of additional entitlements for guests, install the rhn-virtualization-common package manually before attempting to register the system to Red Hat Network. (BZ#431648)
  • When installing Red Hat Enterprise Linux 5 on a guest, the guest is configured to explicitly use a temporary installation kernel provided by dom0. Once installation finishes, it can then use its own bootloader. However, this can only be achieved by forcing the guest's first reboot to be a shutdown.
    As such, when the Reboot button appears at the end of the guest installation, clicking it shuts down the guest, but does not reboot it. This is an expected behavior.
    Note that when you boot the guest after this it will then use its own bootloader. (BZ#328471)
  • Using the swap --grow parameter in a kickstart file without setting the --maxsize parameter at the same time makes anaconda impose a restriction on the maximum size of the swap partition. It does not allow it to grow to fill the device.
    For systems with less than 2GB of physical memory, the imposed limit is twice the amount of physical memory. For systems with more than 2GB, the imposed limit is the size of physical memory plus 2GB. (BZ#462734)
  • Existing encrypted block devices that contain vfat file systems will appear as type foreign in the partitioning interface; as such, these devices will not be mounted automatically during system boot. To ensure that such devices are mounted automatically, add an appropriate entry for them to /etc/fstab. For details on how to do so, refer to man fstab. (BZ#467202)
  • when using anaconda's automatic partitioning on an IBM System p partition with multiple harddisks containing different Linux distributions, the anaconda installer may overwrite the bootloaders of the other Linux installations although their harddisks have been unchecked. To work around this, choose manual partitioning during the installation process.(BZ#519795)
The following note applies to PowerPC Architectures:
  • The minimum RAM required to install Red Hat Enterprise Linux 5.2 is 1GB; the recommended RAM is 2GB. If a machine has less than 1GB RAM, the installation process may hang.
    Further, PowerPC-based machines that have only 1GB of RAM experience significant performance issues under certain RAM-intensive workloads. For a Red Hat Enterprise Linux 5.2 system to perform RAM-intensive processes optimally, 4GB of RAM is recommended. This ensures the system has the same number of physical pages as was available on PowerPC machines with 512MB of RAM running Red Hat Enterprise Linux 4.5 or earlier. (BZ#209165)
The following note applies to s390x Architectures:
  • Installation on a machine with existing Linux or non-Linux filesystems on DASD block devices may cause the installer to halt. If this happens, it is necessary to clear out all existing partitions on the DASD devices you want to use and restart the installer. (BZ#289631)
The following note applies to the ia64 Architecture:
  • If your system only has 512MB of RAM, attempting to install Red Hat Enterprise Linux 5.4 may fail. To prevent this, perform a base installation first and install all other packages after the installation finishes. (BZ#435271)

Note: This documentation is provided {and copyrighted} by Red Hat®, Inc. and is released via the Open Publication License. The copyright holder has added the further requirement that Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. The CentOS project redistributes these original works (in their unmodified form) as a reference for CentOS-5 because CentOS-5 is built from publicly available, open source SRPMS. The documentation is unmodified to be compliant with upstream distribution policy. Neither CentOS-5 nor the CentOS Project are in any way affiliated with or sponsored by Red Hat®, Inc.